Tetrahedron Letters,Vol.25,No.17,pp 1773-1776,1984 0040-4039/84 \$3.00 + .00 Printed in Great Britain ©1984 Pergamon Press Ltd.

REGIOSELEKTIVE [4+3]-CYCLOADDITIONEN VON HETEROSUBSTITUIERTEN ALLYLIUM-2-OLATEN (OXALLYLEN) AN 2-METHYLFURAN

Baldur Föhlisch*, Robert Flogaus, Jutta Oexle und Angelika Schädel

Institut für Organische Chemie, Biochemie und Isotopenforschung der Universität Stuttgart, Pfaffenwaldring 55, D-7000 Stuttgart 80

<u>Summary</u>: 1,1-Dichloro- and 1,3-dichloro-2-alkanones react with 2-methylfuran in the presence of lithium perchlorate/triethylamine to form 2-chloro-1methyl-8-oxabicyclo[3.2.1]oct-6-ene-3-ones predominantly.

Allylium-2-olate (Oxallyle) können nun nach verschiedenen Methoden erzeugt werden. Diese reaktiven Zwischenstufen sind vor allem interessant als Komponenten für [4+3]-Cycloadditionen zur Synthese von Cycloheptenonen¹. Erzeugt man in Gegenwart eines unsymmetrischen Diens Oxallyle, die an den Kohlenstoff-Termini verschiedene Substituenten tragen, so stellt sich die Frage nach der Regioselektivität der [4+3]-Cycloaddition. Angesichts des großen Potentials regioselektiver Diels-Alder-Reaktionen für die organische Synthese wurden wir angespornt, regioselektive [4+3]-Cycloadditionen zu entwickeln. Da Furan in besonders guter Ausbeute an Oxallyle cycloaddiert wird, setzten wir für eine erste systematische Untersuchung 2-Methylfuran (1) mit α -Chlorketonen (2) nach der Lithiumperchlorat/Triethylamin-Methode² um. In einer Cycloaddition an das unsymmetrisch substituierte Oxallyl 3 sollten die am Brückenkopf methylierten 8-Oxabicyclo[3.2.1]oct-6-en-3-one 4 und 5 entstehen; mit drei verschiedenen Substituenten R, R', X sind von den beiden Regioisomeren jeweils vier exo-endo-Stereoisomere ($\underline{\alpha} - \underline{\delta}$) möglich.

Nachdem 1-Chlor-2-butanon mit unsubstituiertem Furan den erwarteten Bicyclus nur in einer Ausbeute von wenigen Prozenten ergeben hatte, ließen wir das höher methylierte 1-Chlor-3-methyl-2-butanon (2a), welches ein besser stabilisiertes und unsymmetrischeres Allylium-Ion liefern sollte, mit <u>1</u> reagieren. Die Reaktion zeigte jedoch keinerlei Regioselektivität, denn man erhielt ein 1:1 - Gemisch der erwarteten und bereits bekannten Cycloaddukte <u>4a</u> und <u>5a</u>³. Aus dem Methoxyketon <u>2b</u>⁴ hingegen entstanden die Bicyclen <u>4ba</u> und <u>5ba</u> im Verhältnis 1:3.

Regioselektivität in umgekehrtem Sinne zeigen die Reaktionen der 1,1-Dichlor-2-alkanone $\underline{2c} - \underline{i}$. Hier dominieren die Regioisomeren $\underline{4}$ (Tabelle). Wie bei der [4+3]-Cycloaddition des unsubstituierten Furans und auch mit $\underline{2b}$ bilden sich mit dem Lithiumperchlorat/Triethylamin-Reagens bevorzugt die endo-2,-

endo-4-konfigurierten Stereoisomeren 4α und 5α neben den exo-exo-Produkten 4β . Die Bicyclen 5β und die endo-exo-Isomeren $4/5\gamma$, $\hat{0}$ konnten nicht isoliert werden; ihr Anteil beträgt laut GC ≤ 5 %. So zeigt das Kapillar-GC des aus 2c erhaltenen Reaktionsgemisches 7 Peaks mit dem Intensitätsverhältnis 26:1:1:3: 49:20:0.1 (FID, nach steigender Retentionszeit geordnet). Die drei Hauptprodukte konnten durch Mitteldruck-Chromatographie isoliert und als die Isomeren $4c\alpha$ (49% GC), $4c\beta$ (26% GC) und $5c\alpha$ (20% GC) identifiziert werden. Die Strukturzuordnung der Isomeren basiert auf den charakteristischen Unterschieden in der Vicinalkopplung exo- und endo-ständiger Protonen an C-4 mit dem Brückenkopf-Proton 5-H (${}^{3}J_{4x,5}$ = 4-5 Hz, ${}^{3}J_{4n,5}$ = <1 Hz) und auf dem entschirmenden Effekt, dem exo-Protonen an den Kohlenstoffatomen C-2 und C-4 unterliegen^{1,2}. Auch die 13 C-NMR-Spektren zeigen charakteristische Unterschiede. Das Verhältnis der Regioisomeren 4:5 ist mit dem Isobutylketon 2g und den am α -Kohlenstoff doppelt alkylsubstituierten Dichlorketonen 2h und 2i besonders hoch.

Viel einfacher als die 1,1-Dichlor-2-alkanone 2h,i lassen sich die isomeren 1,3-Dichlor-2-alkanone <u>6a</u> und <u>6b</u> durch Doppelchlorierung von Isopropylmethylketon und Cyclohexylmethylketon mit Sulfurylchlorid herstellen⁵. Sie sollten

Chlor-	R	R'	х	Produkte	Ausbeute	e endo/exo-	Verhältnis	Charakteristische
keton				<u>4/5</u>	<u>4</u> + <u>5</u>	Verhältnis	$(\underline{4\alpha}+\underline{\beta}):\underline{5\alpha}^{b}$	Daten
						$4\alpha:4\beta^{b}$		
<u>2a</u>	СН3	СНЗ	н	a	49%	-	1:1	Lit. ³
<u>2b</u>	СН3	н	OCH ₃	b	49%	nur 4α isol	. 1 : 3	7
<u>2c</u>	СНЗ	н	C1	c	68%	2 : 1	4:1	7
2đ	с ₂ н ₅	Н	Cl	<u>d</u>	64%	2:1	6:1	7
2e	n-C ₃ H ₇	H	Cl	<u>e</u>	75%	2 : 1	5 : 1	7
<u>2f</u>	n-C ₇ H ₁₅	Н	C1	f	59%	2:1	5 : 1	7
<u>2g</u>	i-C ₃ H ₇	н	Cl	đ	54%	2:1	>16 : 1	7
<u>2h</u>	CH3	CH3	Cl	h	48% ^C	ca.15 : 1 ^d	9:1	Lit. ⁶
<u>6a</u>	СНЗ	снз	-	h	68%	ca.13 : 1 ^d	9:1	Lit. ⁶
<u>2i</u>	(CH ₂);	<u> </u>	C1	i	83%	8:1	16 : 1	7
<u>6b</u>	— (Сн ₂)	5	-	<u>i</u>	75%	9:1	16 : 1	7
<u>6c</u>	— (Сн ₂)	1	-	<u>i</u>	48% ^C	17 : 1	16 : 1	7

Tabelle. 8-Oxabicyclo[3.2.1]oct-6-en-3-one ($\underline{4}, \underline{5}$) aus 2-Methylfuran ($\underline{1}$) und α -Chlorketonen ($\underline{2}, \underline{6}$) mit LiClo₄/NEt₃ in Diethylether bei Raumtemperatur^a

^a Experimentelle Durchführung und Aufarbeitung wie in Lit.² beschrieben. ^b Durch GC bestimmt. ^c Ausbeute nicht optimiert. ^d GC-Peaks nicht vollständig getrennt.

zum selben Allylium-Ion ($\underline{7}$) wie aus $\underline{2h}$ und $\underline{2i}$ zu erwarten, führen. In der Tat entstehen aus <u>6a</u> und <u>6b</u> die Bicyclen <u>4h</u>,<u>i</u> und <u>5h</u>,<u>i</u> in ungefähr demselben Isomerenverhältnis. Analog läßt sich das Cycloheptenspirocyclopentan-Skelett (<u>4j</u>/ 5j) aufbauen.

Die dominierenden Stereoisomeren $4h\alpha - 4j\alpha$ lassen sich durch eine einfache Umkristallisation aus Petrolether von den übrigen Isomeren abtrennen. Sie können, z.B. durch Zink-Kupfer-Paar, enthalogeniert werden². Mit der Cycloaddition-Enthalogenierung steht damit eine Methode zur regiochemisch gesteuerten Synthese von funktionalisierten, α,β' -alkylsubstituierten Cycloheptanonen zur Verfügung, die zur Synthese von Terpenen interessant sein sollte. Über solche Anwendungen, mechanistische Aspekte und die MO-theoretische Analyse der Regioselektivität werden wir später berichten.

Diese Arbeit wurde vom Fonds der Chemischen Industrie unterstützt. Den Herren Bernd Clauß und Rainer Az danken wir für präparative Beiträge.

- 1. H.M.R. Hoffmann, Angew. Chem. 96, 29 (1984).
- 2. R. Herter und B. Föhlisch, Synthesis 1982, 976.
- 3. N.J. Turro, S.S. Edelson, J.R. Williams, T.R. Darling und W.B. Hammond, J. Am. Chem. Soc. <u>91</u>, 2283 (1969), erhielten <u>4a</u> + <u>5a</u> im selben Verhältnis aus 2-Methylfuran und 2,2-Dimethylcyclopropanon.
- 4. Hergestellt aus 1-Methoxy-2-butanon und Sulfurylchlorid in Tetrachlorkohlenstoff bei 0°C; ¹H-NMR (CDCl₃): δ = 1.12 (t, J = 7 Hz, 4-H), 2.75 (q, J = 7 Hz, 3-H), 3.63 (s, CH₃O-), 5.63 (s, 1-H).
- 5. P.D. Wyman und P.R. Kaufman, J. Org. Chem. 29, 1956 (1964).
- 6. N. Shimizu, M. Tanaka und Y. Tsuno, J. Am. Chem. Soc. 104, 1330 (1982).
- 7. Für die neuen Bicyclen liegen zufriedenstellende Elementaranalysen und Massenspektren vor. Einige charakteristische NMR-Daten (CDCl₃) folgen: <u>4ba</u>: $\delta = 0.95$ (d, J = 7 Hz, 4-CH₃), 1.53 (s, 1-CH₃), 2.83 (dq, J_{4H,CH₂} 7 Hz $J_{45} = 4-5$ Hz, 4-H), 3.62 (s, CH₃O-), 3.65 (s, 2-H), 4.82 (dd, $J_{45} = 4^{-5}5$ Hz, $J_{56} = 1-2 \text{ Hz}, 5-\text{H}$, 6.07-6.33 (m, 6-H, 7-H). $\frac{5b\alpha}{2}$: $\delta = 1.02$ (d, J = 7 Hz, 2-CH₃), 1.50 (s, 1-CH₃), 2.58 (q, J = 7 Hz, 2-H), 3.57 (s, CH₃O-), 3.97 (d, J_{45} = 5 Hz, 4-H), 5.00 (dd, J_{45} = 5 Hz, $J_{56} = 1-2 \text{ Hz}, 5-\text{H}$, 6.05-6.33 (m, 6-H, 7-H). <u>4ca</u>: δ = 1.05 (d, J = 7.0 Hz, 4-CH₃), 1.66 (s, 1-CH₃), 2.94 (dq, J_{4H,CH₂} = 7.0 Hz, $J_{45} = 4.8$ Hz, 4-H), 4.38 (s, 2-H), 4.87 (dd, $J_{45} = 4.8$ Hz, $J_{56} = 3.8$ 1.6 Hz, 5-H), AB-Teilspektrum mit δ_{A} = 6.22 (7-H), δ_{B} = 6.31 (6-H), J_{AB} = $J_{67} = 6.1 \text{ Hz}$, dessen Tieffeld-Teil verdoppelt ist ($J_{56} = 1.6 \text{ Hz}$). <u>4cB</u>: δ = 1.53 (d, J = 7.5 Hz, 4-CH₃), 1.57 (s, 1-CH₃), 2.43 (tq, J_{4n,5}~ $J_{2n,4n} \approx 1 \text{ Hz}, J_{4H,CH_2} = 7.5 \text{ Hz}, 4-H$, 3.79 (d, $J_{2n,4n} = 0.9 \text{ Hz}, 2-H$), 4.73 (bs, 5-H), AB-Teilspektrum mit $\delta_{A} = 6.01$ (7-H), $\delta_{B} = 6.38$ (6-H), $J_{AB} = J_{67} = 3.38$ 5.8 Hz, dessen Tieffeld-Teil verdoppelt ist $(J_{56} = 1.9 \text{ Hz})$. <u>5ca</u>: δ = 1.09 (d, J = 7.0 Hz, 2-CH₃), 1.52 (s, 1-CH₃), 2.75 (q, J = 7.0 Hz, 2-H), 4.60 (dd, $J_{45} = 4.8$ Hz, $J_{2n,4n} = 0.5$ Hz, 4-H), 5.08 (dd, $J_{45} = 4.8$, $J_{56} = 1.6 \text{ Hz}, 5-\text{H}$, AB-Teilspektrum mit $\delta_A = 6.21 (7-\text{H}), \delta_B = 6.34 (6-\text{H}),$ $J_{AB} = J_{67} = 6.1$ Hz, dessen Tieffeld-Teil verdoppelt ist ($J_{56} = 1.6$ Hz). $4d\alpha$: $\delta_{1_{3_{C}}} = 11.94$ und 19.04 (CH₃CH₂), 21.26 (1-CH₃), 58.21 (C-4), 70.00 (C-2), 81.14 (C-5), 88.43 (C-1), 133.89 und 135.37 (C-6,7), 199.30 (C-3). <u>4dB</u>: δ_{13} = 12.14 und 25.85 (CH₃CH₂), 19.59 (1-CH₃), 56.29 (C-4), 62.55 (C-2), 80.91 (C-5), 84.93 (C-1), 133.92 und 137.10 (C-6,7), 202.25 (C-3). $4e_{\alpha}: \delta_{1_{3}C} = 14.16$, 20.61 und 27.90 (CH₃CH₂CH₂), 21.32 (1-CH₃), 56.41 (C-4), 70.06 (C-2), 81.39 (C-5), 88.49 (C-1), 133.99 und 135.43 (C-6,7), 199.49 (C-3). <u>4eB</u>: $\delta_{1_{3_{C}}} = 13.81$, 20.71 und 34.58 (CH₃CH₂CH₂), 19.59 (1-CH₃), 54.33 (C-4), 62.48 (C-2), 81.14 (C-5), 84.89 (C-1), 133.86 und 137.10 (C-6,7), 202.44 (C-3).

(Received in Germany 27 January 1984)